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We present a comparison of conventional semiempirical wavefunction based MNDO-like 
methods and approximate linear-scaling methods for large molecules. Until recently, linear-
scaling methods such as divide and conquer (D&C) [1] or localized-molecular-orbital (LMO) [2] 
techniques were essential for the treatment of large systems by means of semiempirical MO 
theory. However, conventional full SCF calculations based on a massively parallel code 
(EMPIRE [3]) now allow very large systems to be treated without local approximations. The 
comparison revealed a very slow SCF convergence for gas-phase calculations on zwitterionic 
proteins using a full SCF routine, whereas LMO SCF converges rapidly. Further comparative 
calculations with both techniques showed that the very slow inductive charge-transfer process 
that made the conventional SCF calculations so slow to converge is prevented in the LMO-SCF 
scheme. Therefore, the LMO procedure can lead to artificially over-polarized wavefunctions in 
gas-phase calculations. Example molecules have been constructed to demonstrate this 
behavior.[4] Further, recent applications of semiempirical MO-theory in the field of Self-
Assembled Monolayer Field-Effect Transistors (SAMFETs) are presented.[5–7] 
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